Discovery of motifs to forecast outlier occurrence in time series
نویسندگان
چکیده
The forecasting process of real-world time series has to deal with especially unexpected values, commonly known as outliers. Outliers in time series can lead to unreliable modeling and poor forecasts. Therefore, the identification of future outlier occurrence is an essential task in time series analysis to reduce the average forecasting error. The main goal of this work is to predict the occurrence of outliers in time series, based on the discovery of motifs. In this sense, motifs will be those pattern sequences preceding certain data marked as anomalous by the proposed metaheuristic in a training set. Once the motifs are discovered, if data to be predicted are preceded by any of them, such data are identified as outliers, and treated separately from the rest of regular data. The forecasting of outlier occurrence has been added as an additional step in an existing time series forecasting algorithm (PSF), which was based on pattern sequence similarities. Robust statistical methods have been used to evaluate the accuracy of the proposed approach regarding the forecasting of both occurrence of outliers and their corresponding values. Finally, the methodology has been tested on six electricity-related time series, in which most of the outliers were properly found and forecasted. 2011 Elsevier B.V. All rights reserved.
منابع مشابه
An Approach Based on Multi-feature Wavelet and Elm Algorithm for Forecasting Outlier Occurrence in Chinese Stock Market
The prediction of outliers plays an important role in stock arbitrage and risk avoiding. While most of researches focused on detecting outliers and removing them to forecast time series data, few focused on forecasting the occurrence of outliers. The main goal of this work is to forecast outlier occurrence in Chinese stock market. Firstly, we detect abnormal points of two market indexes and six...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملMotif-based Rule Discovery for Predicting Real-valued Time Series
Time series prediction is of great significance in many applications and has attracted extensive attention from the data mining community. Existing work suggests that for many problems, the shape in the current time series may correlate an upcoming shape in the same or another series. Therefore, it is a promising strategy to associate two recurring patterns as a rule’s antecedent and consequent...
متن کاملForecasting Gold Price using Data Mining Techniques by Considering New Factors
Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 32 شماره
صفحات -
تاریخ انتشار 2011